

CombiPro

Heavy duty process pump according to API 610

CR/EN (1612) 4.2

Orginal instructions Read and understand this manual prior to operating or servicing this product

>Johnson Pump[•]

EC Declaration of conformity

(Directive 2006/42/EC, appendix II-A)

Manufacturer

SPX Flow Technology Assen B.V. Dr. A.F. Philipsweg 51 9403 AD Assen The Netherlands

hereby declares that all pumps member of productfamilies CombiBloc, CombiBlocHorti, CombiChem, CombiDirt, CombiFlex(U)(B), CombiPrime H, CombiLine, CombiLineBloc, CombiMag, CombiMagBloc, CombiNorm, CombiPro(L)(M)(V), CombiPrime V, CombiSump, CombiTherm, CombiWell, FRE, FRES, FREF, FREM, KGE(L), KGEF, HCR, MCH(W)(S), MCHZ(W)(S), MCV(S), PHA, MDR whether delivered without drive (last position of serial number = B), or delivered as an assembly with drive (last position of serial number = A), are in conformity with the provisions of Directive 2006/42/EC (as altered most recently) and where applicable the following directives and standards:

- · EC directive 2014/35/EU, "Electric equipment for use within certain voltage limits"
- standards EN-ISO 12100 part 1 & 2, EN 809

The pumps to which this declaration refers may only be put into operation after they have been installed in the way prescribed by the manufacturer, and, as the case may be, after the complete system of which these pumps form part, has been made to fulfil the requirements of Directive 2006/42/EC (as altered most recently).

Declaration of incorporation

(Directive 2006/42/EC, appendix II-B)

Manufacturer

SPX Flow Technology Assen B.V. Dr. A.F. Philipsweg 51 9403 AD Assen The Netherlands

hereby declares that the partly completed pump (Back-Pull-Out unit), member of productfamilies CombiBloc, CombiBlocHorti, CombiChem, CombiDirt, CombiFlex(U)(B), CombiPrime H, CombiLine, CombiLineBloc, CombiMag, CombiMagBloc, CombiNorm, CombiPro(L)(M)(V), CombiTherm, CombiPrime V, FRE, FRES, FREF, FREM, KGE(L), KGEF, HCR, PHA, MDR is in conformity with the following standards:

EN-ISO 12100 parts 1 & 2, EN 809

and that this partly completed pump is meant to be incorporated into the specified pump unit and may only be put into use after the complete machine of which the pump under consideration forms part has been made and declared to comply with that directive.

Assen, September 1st 2016

I A Wall G

R. van Tilborg, Managing Director

SPXFLOU

Instruction manual

All technical and technological information in this manual as well as possible drawings made available by us remain our property and shall not be used (otherwise than for the operation of this pump), copied, duplicated, made available to or brought to the notice of third parties without our prior written consent.

SPXFLOW is a global multi-industry manufacturing leader. The company's highlyspecialized, engineered products and innovative technologies are helping to meet rising global demand for electricity and processed foods and beverages, particularly in emerging markets.

SPX Flow Technology Assen B.V. P.O. Box 9 9400 AA Assen The Netherlands Tel. +31 (0)592 376767 Fax. +31 (0)592 376760

Copyright © 2015 SPXFLOW Corporation

Table of Contents

1	Introduction	9
1.1	Preface	9
1.2	Safety	9
1.3	Guarantee	10
1.4	Inspection of delivered items	10
1.5	Instructions for transport and storage	10
1.5.1	Weight	10
1.5.2	1	10
1.5.3	0	11
1.5.4	0	11
1.6	Ordering parts	12
2	General	13
2.1	Pump description	13
2.2	Applications	13
2.3	Type code	14
2.4	Serial number	15
2.5	Construction	15
2.6	Pump casing	15
2.7		16
2.8 2.9	Pump cover Wear rings	16 16
2.9 2.10	Mechanical seal	16
2.10	Bearing	16
2.11	Base plate and coupling	16
2.12	Application area	17
2.14	Re-use	17
2.15	Scrapping	17
3	Installation	19
3.1	Safety	19
3.2	Preservation	19
3.3	Environment	19
3.4	Mounting	20
3.4.1	Installation of a pump unit	20
3.4.2	0 1 1	20
3.4.3	0 1 0	20
3.4.4		21
3.4.5	0	21
3.5	Piping	22

3.6 3.7	Accessories Connection of the electric motor	23 23
4	Commissioning	25
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Inspection of the pump Inspection of the motor Pumps with oil-bath lubricated bearings Preparing the pump unit for commissioning Checking the sense of rotation Start-up Pump in operation Noise	25 25 25 26 26 26 26 26 26
5	Maintenance	27
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Daily maintenance Mechanical seal Lubrication of the bearings Environmental influences Noise Motor Faults	27 27 27 28 28 28 28 28
6	Problem solving	29
7	Disassembly and assembly	31
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.6 7.6.1 7.6.2 7.6.3 7.7 7.7.1 7.7.2 7.7.3	Precautionary measures Special tools Draining Liquid draining Oil draining Back-Pull-Out system Disassembling the guard Disassembling the Back-Pull-Out unit Assembling the Back-Pull-Out unit Assembling the Back-Pull-Out unit Assembling the guard Replacing the impeller and the wear ring Disassembling the impeller Mounting the impeller Disassembling the wear rings Assembling the wear rings Mechanical seal Instructions for mounting a cartridge seal Disassembling a cartridge seal Bearing Instructions for assembly and disassembly of bearings Disassembling bearing Assembling bearing	31 31 31 32 32 32 32 33 33 33 33 33 33 33 33 33
8	Dimensions	39
8.1 8.2 8.2.1 8.2.2 8.3 8.4	Pump dimensions Flange dimensions Flange dimensions ASME B16.5 150lbs (ISO7005 PN20) Flange dimensions ASME B16.5 300lbs (ISO7005 PN50) Pump dimensions Pump-motor unit	39 40 40 40 40 41 41

9 P	arts	43
9.1		
9.1 9.1.1	Ordering parts Order form	43 43
9.1.1	Recommended spare parts	43
9.1.2	Pump	44
9.2.1	Sectional drawing pump	44
9.2.2	Parts list pump	45
9.3	Mechanical seal piping plan 11 - tubing	47
9.3.1	Drawing plan 11 - tubing	47
9.3.2	Parts list plan 11 - tubing	47
9.4	Mechanical seal piping plan 11 - flanged	48
9.4.1	Drawing plan 11 - flanged	48
9.4.2	Parts list plan 11 - flanged	48
9.5	Oil chamber jacket	49
9.5.1	Drawing oil chamber jacket	49
9.5.2	Parts list oil chamber jacket	49
9.6	Pump casing jacket	50
9.6.1	Drawing pump casing jacket	50
9.6.2	Parts list pump casing jacket	50
10 T	echnical data	51
10.1	Tightening moments	51
10.1.1	Tightening moments for bolts and nuts	51
10.1.2	Tightening moments for cap nut	51
10.1.3	Torques settings for nuts for pump casing	52
10.2	Permissible forces and moments on the flanges	53
10.2.1	Allowable forces and moments on suction and discharge flanges	54
10.2.2	Allowable forces and moments on the drain flange	55
10.3	Lubricants	55
10.3.1	Oil	55
10.3.2	Oil contents	55
10.4	Hydraulic performance	56
10.4.1	Performance overview cast steel material class S-1	56
10.4.2	Performance overview material classes S-6, S-8, C-6, A-8	58
10.5	Noise data	60
10.5.1	Pump noise as a function of pump power	60
10.5.2	Noise level of entire pump unit	61
	Index	63
	Order form for spare parts	65

SPXFLOU

1 Introduction

1.1 Preface

This manual is intended for technicians and maintenance staff and for those who are in charge of ordering spare parts.

This manual contains important and useful information for the proper operation and maintenance of this pump. It also contains important instructions to prevent potential accidents and damage, and to ensure safe and fault-free operation of this pump.

Read this manual carefully before commissioning the pump, familiarize yourself with the operation of the pump and strictly obey the instructions!

The data published here comply with the most recent information at the time of going to press. However they may be subject to later modifications.

SPXFLOW reserves the right to change the construction and design of the products at any time without being obliged to change earlier deliveries accordingly.

1.2 Safety

This manual contains instructions for working safely with the pump. Operators and maintenance staff must be familiar with these instructions. Installation, operation and maintenance has to be done by qualified and well prepared personnel.

Below is a list of the symbols used for those instructions and their meaning:

	Personal danger for the user. Strict and prompt observance of the corresponding instruction is imperative!
!	Risk of damage or poor operation of the pump. Follow the corresponding instruction to avoid this risk.
\triangleright	Useful instruction or tip for the user.
	Items which require extra attention are shown in bold print .

This manual has been compiled by SPXFLOW with the utmost care. Nevertheless SPXFLOW cannot guarantee the completeness of this information and therefore assumes no liability for possible deficiencies in this manual. The buyer/user shall at all times be responsible for testing the information and for taking any additional and/or deviating safety measures. SPXFLOW reserves the right to change safety instructions.

1.3 Guarantee

SPXFLOW shall not be bound to any guarantee other than the guarantee accepted by SPXFLOW. In particular, SPXFLOW will not assume any liability for explicit and/or implicit guarantees such as but not limited to the marketability and/or suitability of the products supplied.

The guarantee will be cancelled immediately and legally if:

- Service and/or maintenance is not undertaken in strict accordance with the instructions.
- The pump is not installed and operated in accordance with the instructions.
- Necessary repairs are not undertaken by our personnel or are undertaken without our prior written permission.
- Modifications are made to the products supplied without our prior written permission.
- The spare parts used are not original SPXFLOW parts.
- Additives or lubricants used are other than those prescribed.
- The products supplied are not used in accordance with their nature and/or purpose.
- The products supplied have been used amateurishly, carelessly, improperly and/or negligently.
- The products supplied become defective due to external circumstances beyond our control.

All parts which are liable to wear are excluded from guarantee. Furthermore, all deliveries are subject to our "General conditions of delivery and payment", which will be forwarded to you free of charge on request.

1.4 Inspection of delivered items

Check the consignment immediately on arrival for damage and conformity with the advice note. In case of damage and/or missing parts, have a report drawn up by the carrier at once.

1.5 Instructions for transport and storage

1.5.1 Weight

A pump or a pump unit is generally too heavy to be moved by hand. Therefore, use the correct transport and lifting equipment. Weight of the pump or pump unit are shown on the label on the cover of this manual.

1.5.2 Use of pallets

Usually a pump or pump unit is shipped on a pallet. Leave it on the pallet as long as possible to avoid damages and to facilitate possible internal transport.

When using a forklift always set the forks as far apart as possible and lift the package with both forks to prevent it from toppling over! Avoid jolting the pump when moving it!

1.5.3 Hoisting

When hoisting a pump or complete pump units the straps must be fixed in accordance with figure 1 and figure 2.

When lifting a pump or a complete pump unit always use a proper and sound lifting device, approved to bear the total weight of the load! Never go underneath a load that is being lifted!

If the electric motor is provided with a lifting eye, this lifting eye is intended only for the purpose of carrying out service activities to the electric motor! The lifting eye is designed to bear the weight of the electric motor only! It is NOT permitted to lift a complete pump unit at the lifting eye of an electric motor!

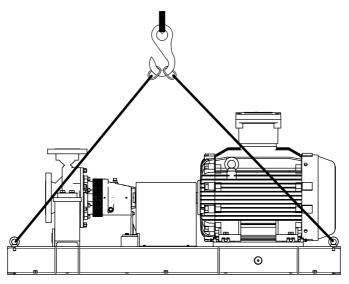


Figure 1: Lifting instructions for pump unit.

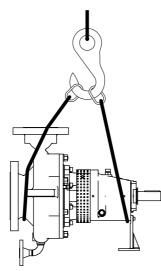


Figure 2: Lifting instructions for single pump.

1.5.4 Storage

If the pump is not to be used immediately the pump shaft must be turned by hand twice per week.

1.6 Ordering parts

This manual contains a survey of the spare parts recommended by SPXFLOW as well as the instructions for ordering them. A fax-order form is included in this manual.

You should always state all data stamped on the type plate when ordering parts and in any other correspondence regarding the pump.

> This data is also printed on the label on the front of this manual.

If you have any questions or require further information with regard to specific subjects, then do not hesitate to contact SPXFLOW.

2 General

2.1 Pump description

The CombiPro represents a range of horizontal "heavy duty" centrifugal pumps. The design of this range of pumps is based on the guidelines for: "Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries" from the "American Petroleum Institute" otherwise known as the API Standard 610 (identical to ISO 13709). The CombiPro range therefore meets the high requirements which have been set by the refineries and the petrochemical industry.

The API 610 contains important technical guidelines in order to guarantee optimum reliability. The CombiPro amply complies with these requirements. This has been demonstrated through extensive research and can be supported on the basis of advanced methods of calculation.

2.2 Applications

- In general, this pump can be used for thin, clean or slightly polluted liquids. These liquids should not affect the pump materials.
- The maximum allowed system pressure and temperature and the maximum speed depend on the pump type and the pump construction.
- Further details about the application possibilities of your specific pump are mentioned in the order confirmation and/or in the data sheet enclosed with the delivery.
- Do not use the pump for purposes other than those for which it is delivered without prior consultation with your supplier.

Using a pump in a system or under system conditions (liquid, working pressure, temperature, etc.) for which it has not been designed may hazard the user!

2.3 Type code

Pumps are available in various designs. The main characteristics of the pump are shown in the type code.

Example: CR 50A-200 A-8 1CW-FL

Pump family		
CR CombiPro		
Pump size		
50A	discharge connection [mm]. A and B design pump types have the same designation though they have different hydraulic performances	
200	nominal impeller diameter [mm]	
Pump casing material according to API 610		
S-1	carbon steel	
S-6	carbon steel	
S-8	carbon steel	
C-6	12% CHR	
A-8	316 AUS	
	Impeller material according to API 610	
S-1	cast iron	
S-6	12% CHR	
S-8	316 AUS	
C-6	12% CHR	
A-8	316 AUS	
	Shaft sealing code according to API 682	
Arrangen	nent 1	
1CW-FX	Contacting single wet seal with a fixed throttle bushing	
	Contacting single wet seal with a floating throttle bushing	
Arrangen		
2CW-CW	Liquid buffer fluid, Dual contacting wet seals	
	Gas buffer fluid or no buffer fluid, Contacting wet inner seal with a containment seal	
2NC-CS	Gas buffer fluid or no buffer fluid, Non-contacting inner seal with a containment seal	
Arrangement 3		
3CW-FB	Liquid barrier fluid, Contacting wet seals in a face-to-back configuration	
3CW-BB	Liquid barrier fluid, Contacting wet seals in a back-to-back configuration	
3CW-FF	Liquid barrier fluid, Contacting wet seals in a face-to-face configuration	
3NC-BB	Gas barrier fluid, Non-contacting seals in a back-to-back configuration	
3NC-FF	Gas barrier fluid, Non-contacting seals in a face-to-face configuration	
3NC-FB	Gas barrier fluid, Non-contacting seals in a face-to-back configuration	

2.4 Serial number

Serial number of the pump or pump unit are shown on the name plate off the pump and on the label on the cover of this manual.

Example: 01-1000675A

01	year of manufacture
100067	unique number
5	number of pumps
А	pump with motor
В	pump with free shaft end

2.5 Construction

The pump has a modular design. The main components are:

- Pump casing
- Impeller
- Shaft sealing
- Bearing

In general for each individual pump type there is only one design of the pump casing and the impeller. So, the hydraulic performance is fixed. However for several pump types there has been developed an additional "low' or "high flow" design. The required capacity and head are obtained by pump speed selection and, if necessary, reduction of the impeller diameter.

The pumps are divided into three bearing groups. Each bearing group only has one pump shaft and one bearing arrangement.

The pumps are also standardized into six groups with the same connection for the pump casing and pump cover, depending on the nominal impeller diameters. For each combination of shaft and nominal impeller diameter there is one pump cover, in various materials, and one bearing bracket which is made from carbon steel.

The various designs of pumps are created by the addition of shaft seal "cartridges". These "cartridges" are standardized in the same three groups as the pump shafts and are designed in accordance with API 682 (identical to ISO 21049).

In addition to this various material varieties can be used for components which come into contact with the pumped liquid.

2.6 Pump casing

On the suction side of the impeller the pump casing is provided with a renewable wear ring. An anti-rotation partition is fitted into the inlet. The centering edge for the pump cover is located on the outside of the packing for the pump casing and does not therefore come into contact with the liquid.

The suction and discharge flanges are designed and machined in accordance with ASME B16.5 300 lbs RF (ISO 7005 PN50), and it is also possible to supply the flanges drilled in accordance with the ASME B16.5 150 lbs RF (ISO 7005 PN20). The outside diameter and the thickness of the inlet and outlet flanges are, in this case, in accordance with ASME B16.5 300 lbs. The surface finish of the flanges is according ASME B16.5 requirements. The drain of the pump casing is a "butt-welded" flanged design coherent to the pump casing's pressure class.

2.7 Impeller

The back of the closed impeller is provided with back vanes in order to limit the pressure on the shaft seal and to allow the flushing liquid to circulate. Contamination of the shaft seal is also prevented. On the inlet side the impeller is provided with an interchangeable wear ring. Running clearances meet the requirements of API 610.

2.8 Pump cover

The pump is designed to fit any seal type in accordance with API 682. In collaboration with various suppliers of mechanical seals the design has been closely evaluated in order to be able to build in the required variants.

2.9 Wear rings

Both the impeller and the pump casing are fitted with a renewable wear ring. The impeller wear ring has a hardness at least 50°Br over the casing wear ring. The rings are secured by three lock screws.

2.10 Mechanical seal

The various designs of pumps are created by the addition of shaft seal "cartridges". These "cartridges" are standardized in the same three groups as the pump shafts and are designed in accordance with API 682.

2.11 Bearing

- The bearing construction consists of two angular contact bearings (in "O" arrangement) combined with a cylindrical roller bearing. The bearings are oil lubricated. The oil level is kept constant by means of a constant level oiler. The bearings on the coupling side with which the axial force is taken up are retained on the shaft by a shaft nut. The outer ring of these bearings is retained by the bearing cover.
- The cylindrical roller bearing on the impeller side takes up radial forces and is mounted "floating" on the outer ring. As a result of this the machining tolerances and expansions can be easily accommodated. The bearing arrangement is sealed by labyrinth rings.
- If required, the oil bath can be provided with cooling for example when the ambient temperature is higher than 45°C, or in other extreme applications like a liquid temperature above 200°C. The underside of the bearing bracket is provided with an option for creating a cooling chamber jacket.

2.12 Base plate and coupling

A unique base plate is made for each pump/motor combination. This is designed in the most optimum way for the relevant combination. The base plate is assembled from steel sections and is of an open design so that it can be grouted into concrete. This provides maximum rigidity to the structure so that forces from the network of pipes have a very limited effect on alignment errors in the coupling.

A stainless steel drip pan under the entire pump collects all leakage liquid and discharges this to the drain point, which has a 2" connection. Adjustment bolts are provided in the base plate for accurate horizontal adjustment of the entire unit.

Pump and motor are assembled with a flexible coupling with spacer (so called "Spacer coupling"). As a result of this it is possible to disassemble the pump without having to remove the motor and the pump casing from the base plate. This is known as the "back-pull-out" principle.

2.13 Application area

The application area globally looks as follows:, *Table 1: Application area.*

	Maximum value
Capacity	350 m ³ /h
Discharge head	160 m
System pressure	3500kPa (35 bar)
Temperature	-30 to +350 °C
Viscosity	300 mm ² /s

However, the maximum allowable pressures and temperatures depend strongly on the selected materials and components. Also working conditions may cause differences.

2.14 Re-use

The pump may only be used for other applications after prior consultation with SPXFLOW or your supplier. Since the lastly pumped medium is not always known, the following instructions should be observed:

- 1 Flush the pump properly.
- 2 Make sure the flushing liquid is discharged safely (environment!)

Take adequate precautions and use the appropriate personal protection means like rubber gloves and spectacles!

2.15 Scrapping

If it has been decided to scrap a pump, the same flushing procedure as described for Re-use should be followed.

3 Installation

3.1 Safety

- Read this manual carefully prior to installation and commissioning. Non-observance of these instructions can result in serious damage to the pump and this will not be covered under the terms of our guarantee. Follow the instructions given step by step.
- Ensure that the pump can not be started if work has to be undertaken to the pump during installation and the rotating parts are insufficiently guarded.
- Depending on the design the pumps are suitable for liquids with a temperature of up to 350°C. When installing the pump unit to work at 65°C and above the user should ensure that appropriate protection measures and warnings are fitted to prevent contact with the hot pump parts.
- If there is danger of static electricity, the entire pump unit must be earthed.
- If the pumped liquid is harmful to men or the environment, take appropriate measures to drain the pump safely. Possible leakage liquid from the shaft seal should also be discharged safely.

3.2 Preservation

Before commissioning the pump remove any preserving agents and flush the pump thoroughly with hot water.

3.3 Environment

- The foundation must be hard, level and flat.
- The area in which the pump is installed must be sufficiently ventilated. An ambient temperature or air humidity which is too high, or a dusty environment, can have a detrimental effect on the operation of the electric motor.
- There should be sufficient space around the pump unit to operate and if necessary repair it.
- Behind the cooling air inlet of the motor there must be a free area of at least 1/4 of the electric motor diameter, to ensure unobstructed air supply.

3.4 Mounting

3.4.1 Installation of a pump unit

Pump and motor shafts of complete pump units are adjusted perfectly in line in the works.

- 1 Horizontal alignment of the base plate is done with levelling screws. Use a spirit level for correct horizontal alignment of the base plate.
- 2 Grout the base plate, see paragraph 3.4.5 "Grouting base plate".
- 3 Check the alignment of pump and motor shafts and if necessary realign, see paragraph 3.4.3 "Alignment of the coupling".

3.4.2 Assembling a pump unit

If the pump and the electric motor still have to be assembled, do the following:

- 1 Fit both halves of the coupling to the pump shaft and the motor shaft respectively. The front of the hub must be flush with the shaft end.
- 2 Place the pump on the base plate. Fix the pump to the base plate.
- 3 Place the electric motor on the base plate. Always place shims of 5 mm thickness under the electric motor feet. Move the motor to obtain a gap of 140 mm between both coupling halves.
- 4 Place copper shims under the feet of the electric motor. Fix the electric motor to the base plate.
- 5 Align the coupling in accordance with the following instructions.

3.4.3 Alignment of the coupling

Alignment is achieved by adding or removing shims under the motor feet and also moving the motor horizontally as required.

Carry out alignment of the motor only as piping strain will occur if the pump is shifted.

For couplings use a dial indicator as figure 3 shown. The alignment values are maximums for continuous service, see paragraph 3.4.4 "Tolerances for aligning the coupling".

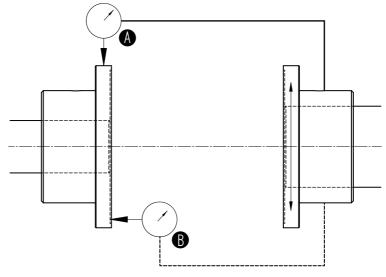


Figure 3: Aligning the coupling, A= Parallel, B= Angular.

SPXFLOU

Parallel alignment

- 1 Mount dial gauge (A) on the coupling halve motor side, see figure 3.
- 2 Make index lines on the two coupling halves.
- 3 Set the dial gauge pointer to zero, turn motor shaft 360 °.
- 4 Read dial gauge (A). Add or remove shims under the motor until the reading of the dial gauge is within the allowable tolerance, see paragraph 3.4.4 "Tolerances for aligning the coupling".
- 5 Repeat the procedure.
- 6 Remove dial gauge (A).

Angular alignment

- 1 Mount dial gauge (B) on the coupling halve motor side, see figure 3.
- 2 Make index lines on the two coupling halves.
- 3 Set the dial gauge pointer to zero, turn motor shaft 360 °.
- 4 Read dial gauge (B). Move the motor sideways until the deflection is halved, see paragraph 3.4.4 "Tolerances for aligning the coupling".
- 5 Repeat the procedure.
- 6 Remove dial gauge (B).
- 7 Fit the guard. See paragraph 7.4.4 "Assembling the guard".

3.4.4 Tolerances for aligning the coupling

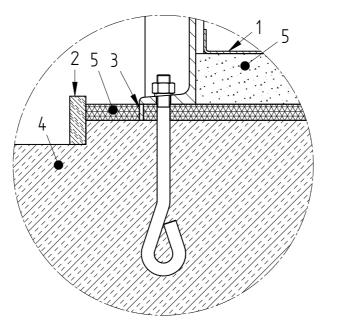
The maximum allowable tolerances for the alignment of the coupling halves are shown in Table 2.

Table 2: Alignment tolerances

External diameter of coupling [mm]	Axial misalignment [mm]	Max. Parallel misalignment [mm]
86	1,0	0,30
105	1,3	0,35
130	1,5	0,45
152	2,0	0,55

The values are maximums for each type of misalignment. It is recommended that the coupling is initially aligned to 10% of these values to allow for inevitable movements during the life of the pump.

3.4.5 Grouting base plate


Use an approved, non-shrinking grout.

Grout manufacturer's instructions should be consulted and followed!

Proceed as follow:

- 1 Align the base plate with sims under the base plate, see figure 4.
- 2 Build a strong wooden frame around the base plate to contain the grout.
- 3 Grout the the wooden frame to the underside of base plate. Allow grout to set.
- 4 Fill the base plate with grout. Allow grout to dry thoroughly before attaching piping to pump (48 hours is sufficient time with approved grouting procedure).

5 When the grout has thoroughly hardened, check the base plate bolt nuts and tighten if necessary.

- 1 Drain pan.
- 2 Wooden frame.
- 3 Shims.
- 4 Basic foundation.
- 5 Grout.

Figure 4: Grouting base plate.

3.5 Piping

- The piping to the suction and delivery connections must fit exactly and must not be subject to stress during operation. For the maximum allowable forces and moments on the pump flanges see paragraph 10.2 "Permissible forces and moments on the flanges".
- The passage of the suction pipe must be amply dimensioned. This pipe should be as short as possible and run towards the pump in such a way that no air pockets can arise. If this is not possible, a venting facility should be provided at the highest point of the pipe. If the inside diameter of the suction pipe is larger than the suction connection of the pump, an eccentric reducer should be applied to prevent air pockets and whirls. See figure 5.

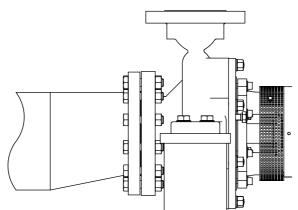


Figure 5: Eccentric reducer to suction flange.

 The maximum allowable system pressure is stated in paragraph 2.13 "Application area". If there is a risk that this pressure might be exceeded, for instance because of an excessive inlet pressure, appropriate measures should be taken by mounting a safety valve in the piping.

 Sudden changes in the rate of flow can lead to high pressure impulses in the pump and the piping (water shock). Therefore, do not use quick-acting closing devices, valves etc.

3.6 Accessories

- Fit any parts that may have been supplied separately.
- If the liquid does not flow towards the pump, fit a foot valve at the bottom of the suction pipe. If necessary, combine this foot valve with a suction strainer to prevent impurities from being drawn in.
- When mounting, place temporarily (for the first 24 operating hours) a fine gauze between suction flange and suction pipe to prevent internal pump parts from being damaged by foreign matter. If the risk of damage continues to exist, fit a permanent filter.
- In case the pump is provided with a cooling chamber, connect the cooling chamber to the supply and return lines of the cooling system.
- In case the pump is provided with an isolation, special attention has to be paid To temperature limits of shaft seal and bearing.

Connection of the electric motor

The electric motor must be connected to the mains by an approved electrician, according to the locally prevailing regulations of the electricity company.

- Refer to the instruction manual belonging to the electric motor.
- If possible, fit a working switch as close as possible to the pump.

SPXFLOU

4 Commissioning

4.1 Inspection of the pump

Check whether the pump shaft turns freely. Do this by turning the shaft end at the coupling a few times by hand.

4.2 Inspection of the motor

Check whether the fuses have been mounted.

4.3 Pumps with oil-bath lubricated bearings

Pumps provided with oil-bath lubricated bearings are shipped without oil and must be filled with oil prior to commissioning the pump!

For the specification of the oil to be used, see paragraph 10.3 "Lubricants".

- 1 Remove the oil filler cap (2130).
- 2 Fill the bearing bracket through the oil filling orifice till the oil shows in the constant level oiler.
- 3 Fit the oil filler cap.
- 4 Top up the constant level oiler entirely.
- 5 See the indication plate (see figure 6) for the right oil level.

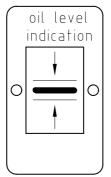


Figure 6: Oil level indication.

4.4 Preparing the pump unit for commissioning

Proceed as follows, both when the unit is put into operation for the first time and after the pump has been overhauled.

- 1 Fully open the stop valve in the suction pipe. Close the delivery stop valve.
- 2 Fill the pump and the suction pipe with the liquid to be pumped.
- 3 Turn the pump shaft a few times by hand and add more liquid, if necessary.

4.5 Checking the sense of rotation

Beware of possible non-screened rotating parts, when checking the sense of rotation!

- 1 The sense of rotation of the pump is indicated by an arrow. Check whether the sense of rotation of the motor corresponds with that of the pump.
- 2 Let the motor run for only a short time and check the sense of rotation.
- 3 If the sense of rotation is **not** correct, alter the sense of rotation. See the instructions in the user manual belonging to the electric motor.
- 4 Fit the guard.

4.6 Start-up

- 1 Open the stop valves in the supply and return lines for flushing or cooling liquid, if the pump is connected to a flushing or cooling system. Ensure these systems are switched on and set at the proper values.
- 2 Start the pump.
- 3 As soon as the pump is under pressure, slowly open the delivery stop valve until the working pressure is attained.
- 4 Open the outlet valve fully until the pump reaches the correct duty point.

A

Make sure that when a pump is running, rotating parts are always properly screened off by the guard!

4.7 Pump in operation

- When the pump is in operation, pay attention to the following:
- The pump should never run dry.
- Never use a stop valve in the suction line to control pump output. The stop valve should always be fully opened during operation.
- Check whether the absolute inlet pressure is sufficient, to prevent vaporization in the pump.
- Check whether the pressure difference between suction and delivery side corresponds with the specifications of the pump's duty point.

4.8 Noise

The noise production of a pump depends to a great extent on the operating conditions. The values stated in paragraph 10.5 "Noise data" are based on normal operation of the pump, driven by an electric motor. In case the pump is driven by a combustion engine, or in case it is used outside the normal operation area, as well as in case of cavitation, the noise level may exceed 85 dB(A). In that case precautions should be taken, like building a noise-barrier around the unit or wearing hearing protection.

5 Maintenance

5.1 Daily maintenance

• Regularly check the oil level, see figure 7.

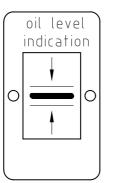


Figure 7: Oil level indication.

A

No water should get into the terminal box of the electric motor when the pump room is sprayed clean! Never spray water on hot pump parts! The sudden cooling down may cause them to burst and hot water may flow out!

Flawed maintenance will result in shorter lifespan, possible break down and in any event loss of warranty.

5.2 Mechanical seal

A mechanical seal generally requires no maintenance, however, **it should never be allowed to run dry**. If there are no problems, do not dismantle the mechanical seal. If a mechanical seal shows any leakage it has to be replaced.

5.3 Lubrication of the bearings

- During operation the constant level oiler should never be empty. Take care to top up timely.
- Frequency of oil change is dependent on pump service and environmental conditions. As a general guide, oil in the bearing bracket should be changed every 4000 operating hours or at least every 6 month, after the initial change. For recommended oils and quantities see paragraph 10.3 "Lubricants".
- Make sure the used oil is discharged safely. See to it that it does not get into the environment.

5.4 Environmental influences

- Regularly clean the filter in the suction pipe or the suction strainer at the bottom of the suction pipe, as the inlet pressure may become too low if the filter or the suction strainer is fouled.
- If there is a risk that the pumped liquid expands during solidification or freezing, the pump has to be drained and, if necessary, flushed after it has been put out of service.
- If the pump is out of service for a long time, it has to be preserved.
- Check motor for accumulation of dust or dirt, which might influence motor temperature.

5.5 Noise

If a pump starts making noise, this may point to certain problems with the pump unit. A crackling noise can indicate cavitation or excessive motor noise can indicate deterioration of the bearings.

5.6 Motor

Check motor specifications for start-stop frequency.

5.7 Faults

The pump, of which you want to determine the fault, may be hot or under pressure. Take the appropriate precautions first and protect yourself with the proper safety devices (safety goggles, gloves, protective clothing)!

To determine the source of the malfunctioning of the pump, proceed as follows:

- 1 Switch off the power supply to the pump unit. Lock the working switch with a padlock or remove the fuse. In case of a combustion engine: switch off the engine and close the fuel supply to the engine.
- 2 Close the stop valves.
- 3 Determine the nature of the fault.
- 4 Try to determine the cause of the fault with chapter 6 "Problem solving" and take the appropriate measures or contact your installer.

6 Problem solving

Faults in a pump installation can have various causes. The fault may not be in the pump, it may also be caused by the pipe system or the operating conditions. Firstly, always check that installation has been executed in accordance with the instructions in this manual and that the operating conditions still correspond with the specifications for which the pump was purchased.

In general, breakdowns in a pump installation are attributable to the following causes:

- Faults with the pump.
- Breakdowns or faults in the pipe system.
- · Faults due to incorrect installation or commissioning.
- Faults due to incorrect choice of pump.

A number of the most frequently occurring failures as well as their possible causes are shown in the table below.

Table 3:	Most frequently	occurring failures.

Most common faults	Possible causes, see Table 4.
Pump delivers no liquid	1 2 3 4 8 9 10 11 13 14 17 19 20 21 27 29
Pump has insufficient volume flow	1 2 3 4 8 9 10 11 13 14 15 17 19 20 21 28 29
Pump has insufficient head	2 4 13 14 17 19 28 29
Pump stops after start up	1 2 3 4 8 9 10 11
Pump has higher power consumption than normal	12 15 16 17 18 22 23 24 25 26 27 38 39
Pump has lower power consumption than normal	13 14 15 16 17 18 20 21 28 29
Pump vibrates or is noisy	1 9 10 11 15 18 19 20 22 23 24 25 26 27 28 29 37 38 39 40
Bearings wear too much or become hot	23 24 25 26 27 37 38 39 40 42
Pump running rough hot or seizes	18 23 24 25 26 27 37 38 39 40 42

	Possible causes
1	Pump or suction pipe is not sufficiently filled or de-aerated
2	Gas or air coming from the liquid
3	Air lock in the suction pipe
4	Air leak in the suction pipe
8	The manometric suction head is too high
9	Suction pipe or suction strainer is blocked
10	Insufficient immersion of foot valve or suction pipe during operation of the pump
11	NPSH available too low
12	Speed too high
13	Speed too low
14	Wrong sense of rotation
15	Pump does not operate at the right duty point
16	Liquid density differs from the calculated liquid density
17	Liquid viscosity differs from the calculated liquid viscosity
18	Pump operates when the liquid flow is too low
19	Wrong pump selection
20	Obstruction in impeller or pump casing
21	Obstruction in the piping
22	Wrong installation of the pump unit
23	Pump and motor not well aligned
24	Rotating part running out of true
25	Imbalance in rotating parts (for instance: impeller or coupling)
26	Pump shaft is running out of true
27	Bearings faulty or worn out
28	Casing wear ring faulty or worn out
29	Damaged impeller
37	Axial retaining of impeller or pump shaft is defective
38	The bearings have been mounted wrongly
39	Too much or too little bearing lubrication
40	Wrong or polluted lubricant
42	Too high axial force because of worn dorsal blades or excessive inlet pressure

Table 4: Possible causes of pump failures.

7 Disassembly and assembly

7.1 Precautionary measures

Take adequate measures to avoid that the motor is started while you are working on the pump. This is especially important for electric motors with remote control:

- Switch the operating switch near the pump (if available) to "OFF".
- Switch off the pump switch on the switchboard.
- If necessary remove the fuses.
- Hang a danger board near the switchboard cabinet.

7.2 Special tools

Assembly and disassembly work requires no special tools. However, such tools can make certain jobs easier, for instance replacing the shaft seal. If such is the case it will be indicated in the text.

7.3 Draining

I

Make sure no liquid or oil gets into the environment!

7.3.1 Liquid draining

Before starting any disassembly the pump should be drained.

- 1 If necessary, close the valves in the suction and delivery pipe and in the flushing or cooling supply lines to the shaft seal.
- 2 Remove the blind flange (1930).
- 3 If harmful liquids are pumped wear protective gloves, shoes, glasses, etc., and thoroughly flush the pump.
- 4 Refit the blind flange.

7.3.2 Oil draining

If the pump is designed with oil lubricated bearings:

- 1 Remove the magnetic drain plug (2150).
- 2 Drain the oil.
- 3 Refit the magnetic drain plug.

If possible, wear protective gloves. Regular contact with oil products may result in allergic reactions.

7.4 Back-Pull-Out system

The pumps are designed with a Back-Pull-Out system. The pump unit is designed with a spacer-coupling, the spacer of this coupling can easily be removed. After that the bearing bracket with the entire rotating part can be removed. This means that almost the whole pump can be dismantled without having to detach the suction and delivery piping. The motor remains in its position.

7.4.1 Disassembling the guard

- 1 Loosen bolts (0960) and remove these. See figure 9.
- 2 Remove the guard (0270).

7.4.2 Disassembling the Back-Pull-Out unit

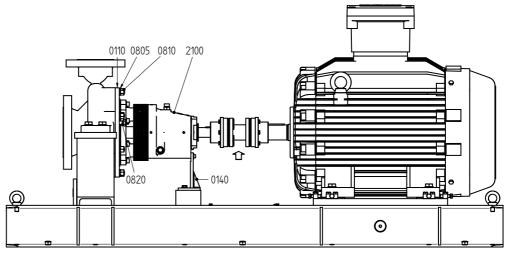


Figure 8: Back-Pull-Out principle.

- 1 Remove the spacer.
- 2 Disconnect possible flushing and/or cooling lines.
- 3 Loosen the bracket support (0140) from the base plate, see figure 8.
- 4 Remove the nuts (0810) and washers (0805). Tighten alternately both bolts (0820) until the pump cover (0110) is released.
- 5 Pull the entire bearing bracket (2100) from the pump casing. The entire bearing bracket of large pumps is very heavy. Support it with a beam or hang it in a pulley sling.
- 6 Remove the coupling half from the pump shaft and remove the coupling key (2210).
- 7.4.3 Assembling the Back-Pull-Out unit
 - 1 Fit a new gasket (0300) into the pump casing and fit the entire bearing bracket back into the pump casing. Place washers (0805) and tighten the nuts (0810) crosswise. For tightening moment of the nuts see paragraph 10.1.3 "Torques settings for nuts for pump casing".
 - 2 Fix the bracket support (0140) on the base plate.
 - 3 Reconnect the flushing and/or cooling lines.
 - 4 Fit the coupling key (2210) and fit the coupling half onto the pump shaft.
 - 5 Fit the spacer of the spacer coupling.
 - 6 Check the alignment of pump and motor shaft, see paragraph 3.4.3 "Alignment of the coupling". If necessary, realign.

SPXFLOU

7.4.4 Assembling the guard

- 1 Place the guard (0270) on the coupling.
- 2 Fit the guard with bolts (0960).

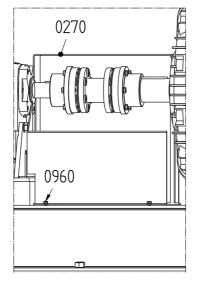


Figure 9: Fitting the guard.

7.5 Replacing the impeller and the wear ring

If the play has risen to 0,9 mm or greater due to wear then both wear rings are replaced.

- 7.5.1 Disassembling the impeller
 - 1 Remove the Back-Pull-Out unit, see paragraph 7.4.2 "Disassembling the Back-Pull-Out unit".
 - 2 Unlock the set screw (1825) and remove the cap nut (1820).
 - 3 Remove the impeller (0120) with a pulley puller, or wrest the impeller by inserting for instance 2 big screwdrivers between the impeller and the pump cover (0110).
 - 4 Remove the impeller key (1860).
- 7.5.2 Mounting the impeller
 - 1 Place the impeller key (1860) in the key way of the pump shaft.
 - 2 Push the impeller onto the pump shaft.
 - 3 Fit the cap nut. For tightening moment of the nut see paragraph 10.1.2 "Tightening moments for cap nut".
 - 4 Fit the set screw (1825).

7.5.3 Disassembling the wear rings

After removing the Back-Pull-Out unit (see paragraph 7.4.2 "Disassembling the Back-Pull-Out unit") the wear rings can be removed. In most cases the ring has been fixed so tightly that it cannot be removed undamaged.

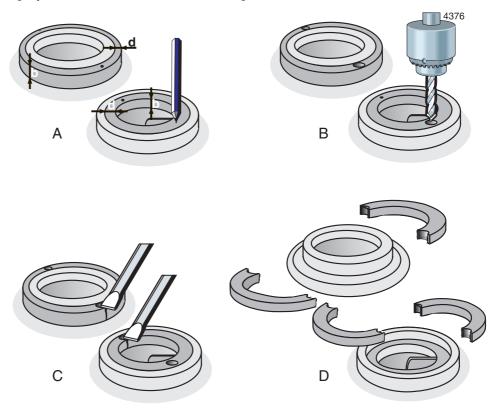


Figure 10: Removal of wear ring.

- 1 Disassembling the impeller, see paragraph 7.5.1 "Disassembling the impeller"
- 2 Unlock the set screw (0155) that lock up the impeller wear ring (0150) on the impeller.
- 3 Unlock the set screw (0135) that lock up the casing wear ring (0130) on the impeller.
- 4 Measure the thickness (d) and the width (b) of the ring, see figure 10 A.
- 5 Make a centre hole in the middle of the edge of the ring at two opposite points, see figure 10 B.
- 6 Use a drill with a diameter just a little bit smaller than the thickness (d) of the ring and drill two holes in the ring, see figure 10 C. Don't drill deeper than the width (b) of the ring. Take care not to damage the fitting edges of the pump casing and impeller.
- 7 Use a chisel to cut the remaining part of the ring thickness. Now you can remove the ring in two parts from the pump casing, see figure 10 D.
- 8 Clean the pump casing and impeller and carefully remove all bore dust and metal splinters.

SPXFLOU

7.5.4 Assembling the wear rings

- 1 Clean and degrease the fitting edge of the pump casing and impeller where the wear ring is to be mounted.
- 2 Fit the casing wear ring in the pump casing. Take care it is not pushed out of alignment!
- 3 Fit the impeller wear ring on the impeller. Take care it is not pushed out of alignment!

Make sure that they are not inserted obliquely!

- 4 Both wear rings then have to be secured. Drill 3 holes Ø5 mm, 9 mm deep, right on the seam between impeller and wear ring c.q. pump casing and wear ring. Subsequently cut screw thread M6 (see figure 11).
- 5 Fit the set screws (0135 and 0155) in their positions in the impeller and the pump casing respectively.

!

Don't fasten the set screws too tight, in order to avoid deformation of the wear rings!

八

Whenever an impeller has new wear rings fitted it must be dynamically balanced before being reassembled!

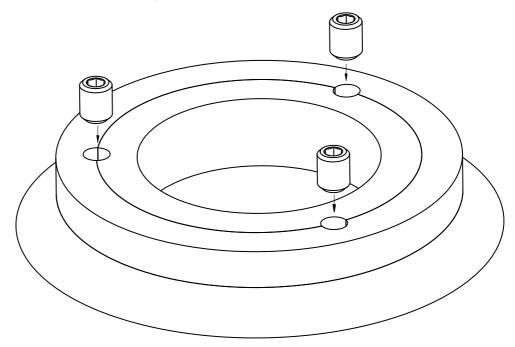


Figure 11: Locking the wear ring.

 \triangleright

7.6 Mechanical seal

7.6.1 Instructions for mounting a cartridge seal

First read the following instructions regarding mounting a cartridge seal. Follow these instructions closely when mounting a cartridge seal.

- This mechanical seal comes as a 'full cartridge seal'. This means that this mechanical seal must be mounted as one single piece and that it shall NOT be taken apart!
- A cartridge seal is a fragile precision instrument. Leave the cartridge seal in its original packing until you are ready to mount it!
- Clean all receiving parts properly. Make sure your hands and working environment are clean!
- 7.6.2 Disassembling a cartridge seal
 - 1 Re-fit the centering tabs on the cover of the seal cartridge into the groove in the seal collar in order to immobilise the cartridge seal.
 - 2 Disassemble the impeller, see paragraph 7.5.1 "Disassembling the impeller".
 - 3 Remove the nuts (1810) and washers (1805) and pull the seal cartridge backwards towards the bearing bracket (2100).
 - 4 Remove the Allen screws (0850) and washer (0855) and knock the pump cover loose from the bearing bracket.
 - 5 Pull the entire seal cartridge from the pump shaft.
- 7.6.3 Mounting a cartridge seal
 - 1 Put the bearing bracket in upright position (impeller side up).
 - 2 Push the seal cartridge onto the pump shaft.
 - 3 Mount the pump cover (0110) in the correct position in the fitting edge of the bearing bracket (2100). **Check whether the pump cover is at right angles to the pump shaft**. Place washers (0855) fasten the pump cover with Allen screw (0850).
 - 4 Mount the seal cartridge to the pump cover (0110). Check the position in view of the connection points. Place washers (0805) fasten the seal cartridge with nuts (0810).
 - 5 Fit the impeller and other parts, see paragraph 7.5.2 "Mounting the impeller" and paragraph 7.4.3 "Assembling the Back-Pull-Out unit".
 - 6 Release the centering tabs of the seal cartridge, turn them halfway round and secure them again against the seal cover. The shaft must now be able to rotate freely.

7.7 Bearing

7.7.1 Instructions for assembly and disassembly of bearings

First read the following instructions regarding assembly and disassembly. Follow these instructions closely when assembling and disassembling bearings.

Disassembly:

- Use a proper puller to remove the bearings from the pump shaft.
- If no proper puller is available, carefully knock at the inner raceway of the bearing. Use an ordinary hammer and a mild steel drift for this.
 Never knock at the bearing with a hammer!

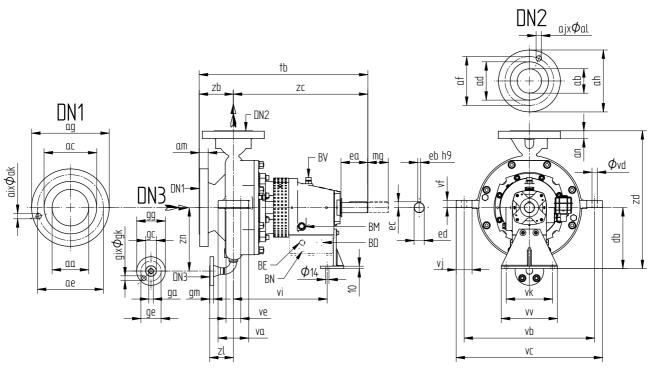
Assembly:

- Make sure your working place is clean.
- Leave the bearings in their original packing as long as possible.
- Make sure the pump shaft and the bearing seats do have a smooth surface, free of burrs.
- Slightly oil the pump shaft and the other relevant parts before assembly.
- Preheat the bearings to 90°C before mounting them on the pump shaft.
- If preheating is not possible: knock the bearing onto the pump shaft. Never knock at the bearing directly! Use a mounting bush positioned against the inner raceway of the bearing and a normal hammer (a soft hammer might loose some splinters which could damage the bearing).
- Always apply a new locking washer (2570) when assembling bearings!

7.7.2 Disassembling bearing

- 1 Dismantle the impeller and the shaft seal, see paragraph 7.5.1 "Disassembling the impeller" and paragraph 7.6.2 "Disassembling a cartridge seal".
- 2 Remove the deflector (2220).
- 3 Remove the coupling with a coupling puller and remove the coupling key (2210).
- 4 Remove the deflector (2180).
- 5 Unscrew the Allen screws (2810 and 2815) and remove the bearing covers (2110 and 2115). Remove the gaskets (2160).
- 6 Knock at the pump shaft (2200) at the impeller side to loosen the bearings from the bearing bracket. Use a plastic hammer to avoid damage to the thread.
- 7 Remove the inner circlip (2300).
- 8 Knock the lip of the locking washer (2570) out of the lock nut (2560) and loosen the lock nut.
- 9 Remove the bearings from the pump shaft.

<u>SPXFLOU</u>


7.7.3 Assembling bearing

- 1 Clean the interior of the bearing bracket properly.
- 2 Preheat the angular contact ball bearings and the inner ring of the cylindrical roller bearing and fit them onto the pump shaft. Make sure they are positioned straight on the pump shaft and push them firmly against the shaft shoulder. The cylindrical roller bearing (2250) is fitted at the impeller side. The angular contact ball bearings are fitted **in O-position** at the drive side. Ensure that the bearings are fitted straight on the pump shaft. Let the bearings cool down!
- 3 Fit the locking washer (2570) and screw the lock nut (2560) on the pump shaft. Tighten the lock nut and lock it by knocking a lip of the locking washer into the opening of the lock nut.
- 4 Fit the inner circlip (2300) into the bearing bracket (2100).
- 5 Fit the pump shaft with bearings, starting from the motor side, in the bearing bracket. Knock at the shaft end at the coupling side until the foremost bearing (2260) slides through the bearing bore. After each knock rotate the pump shaft one turn to prevent bearing damage.
- 6 Fit the outer ring of the cylindrical roller bearing. This ring should go into the bearing bracket **straight.**
- 7 Check to ensure that the oil catchers (2120 and 2125) are undamaged. Replace them if necessary.
- 8 Fit the bearing covers (2110 and 2115) with gaskets (2160) and fix them with Allen screws (2810 and 2815).
- 9 Fit the deflector (2180 and 2220).
- 10 Fit the shaft seal and the impeller, see paragraph 7.6.3 "Mounting a cartridge seal" and paragraph 7.5.2 "Mounting the impeller".

8 **Dimensions**

8.1 Pump dimensions

Connections

BM	Oil drain	½ BSP
BV	Oil filling plug	1⁄2 NPT

Connections (optional)

BD	Inlet oil chamber jacket	1⁄2 NPT
BE	Outlet oil chamber jacket	1⁄2 NPT
BN	Drain oil chamber jacket	1⁄2 NPT

8.2 Flange dimensions

	DN1 - DN2											
aa	ab	ac	ad	ae	af	ag	ah	aixak	ajxal	am	an	
50 (2")	40 (1½")	92	73	120,5	98,5	165	156	4x18	4x16	22	21	
80 (3")	50 (2")	127	92	152,5	120,5	210	165	4x18	4x18	29	22	
100 (4")	80 (3")	157	127	190,5	152,5	254	210	8x18	4x18	32	29	
150 (6")	100 (4")	216	157	241,5	190,5	318	254	8x22	8x18	37	32	
200 (8")	150 (6")	270	216	298,5	241,5	381	318	8x22	8x22	41	37	

8.2.1 Flange dimensions ASME B16.5 150lbs (ISO7005 PN20)

DN3												
ga	gc	ge	gg	gixgk	gm							
15,8 (½")	34,9	60,3	90	4x15,9	11,2							
20,9 (¾")	42,9	69,9	100	4x15,9	12,7							

8.2.2 Flange dimensions ASME B16.5 300lbs (ISO7005 PN50)

				DN1	- DN2						
aa	ab	ac	ad	ae	af	ag	ah	aixak	ajxal	am	an
50 (2")	40 (1½")	92	73	127	114,5	165	156	8x18	4x22	22	21
80 (3")	50 (2")	127	92	168,5	127	210	165	8x22	8x18	29	22
100 (4")	80 (3")	157	127	200	168,5	254	210	8x22	8x22	32	29
150 (6")	100 (4")	216	157	270	200	318	254	12x22	8x22	37	32
200 (8")	150 (6")	270	216	330	270	381	318	12x26	12x22	41	37

DN3												
ga	gc	ge	gg	gixgk	gm							
15,8 (½")	34,9	66,7	95	4x15,9	14,3							
20,9 (¾")	42,9	82,6	115	4x19,1	15,9							

CR	22	ah		db	ea	eb	00	ed	ma	tb	V 2	vb	VC	vd	ve	vf	vi	vi	vk	vv	zb	70	zd	zi*	70*	[ka]
40A-125	aa	ab	ga	ub 140	5 0	8	ec 27	24	mg 100	511	va 100	270		vd	60	20	vi 314	vj	160	190	100	zc 411	2u 300	21	zn*	[kg] 52
40A-125 40A-160				140	50	8	27 27	24 24	100	511	100	300	· · ·		60	20 20	314 314		160	190		411	300			60
40A-160				140	50	8	27	24 24	100	511	100		350		60	20	314	50	160	190	100	411	320			60
40A-100 40A-200	50	40	15,8	160	50	8	27 27	24 24	100	511	100	350	400	18	60	20 25	314	50	160	190	100	411	360			70
40AC-200				160	50	8	27	24 24	100	536	100	400	400		60	25 25	314		160		125	411	385			83
40A-250				180	80	10	27 35	24 32	100	634,5	100	400			60	25 25	378		160	190	125	509,5	405			118
50A-125				140	50	8	27	24	100	511	100	280	330		50	20	314		160	190	100	411	300			59
50A-160				140	50	8	27 27	24 24	100	511	100		350		60	20	314		160	190	100	411	320			66
50A-200	80	50	15.8	160	50	8		24	100	511		350		18	60	25	314	50	160			411	350			78
50A-250	00	00	10,0	180	80	10	27 35	32	100	634,5	100	400			50	25	378		160	190	125	509,5	430			122
50AA-315				200	80	10	35	32	120		120	470			60	30	378		190	230	125	509,5	480			130
50B-125				140	50	8	27	24	100	511	100	300	350		50	20	314		160	190	100	411	300			58
50B-160				160	50	8	27	24	100	511	100	330	380		50	20	314		160	190	100	411	360			64
50B-200				160	50	8	27	24	100	536	100	350	400		50	25	314	50	160	190	125	411	385			79
50BA-200	80	50	15,8	160	50	8	27	24	100	536	100	350	400	18	50	25	314	50	160	190	125	411	385			79
50B-250				180	80	10	35	32	100	634,5	100	400	450		50	25	378		160	190	125	509,5	430			101
50B-315				225	80	10	35	32	120	634,5	120	470	520		60	30	378		190	230	125	509,5	505			138
80A-125				160	50	8	27	24	120	511	120	355	420		60	25	314		160	190	100	411	340			67
80A-160				160	80	10	35	32	120	609,5	120	375	440		60	25	378		160	190	100	509,5	360			105
80AC-160				180	80	10	35	32	120	634.5	120	415	480		60	25	378		160	190	125	509,5	405			129
80A-200	100	80	20,9	180	80	10	35	32	120	609,5	120	415	480	22	60	25	378	65	160	190	100	509,5	405			111
80AC-200				200	80	10	35	32	120	634.5	120	455	520		60	25	378		190	230	125	509,5	450			132
80AA-250				200	80	10	35	32	120	634,5	120	455	520		60	25	378		190	230	125	509,5	450			140
80A-315				225	110	12	45	42	120	676	120	480	545		60	30	385		190	230	125	551	505			180
100A-160				180	80	10	35	32	120	634,5	120	455	520		60	25	378		160	190	125	509,5	405			131
100A-200				180	80	10	35	32	120	634,5	120	455	520		60	25	378		160	190	125	509,5	430			140
100A-250	150	100	20,9	225	80	10	35	32	120	634,5	120	485	550	22	70	25	378	65	190	230	125	509,5	505			160
100AA-250	100	100	20,0	225	80	10	35	32	120	634,5	120	485	550	~~	70	25	378	65	190	230	125	509,5	505			160
100A-315				250	110	12	45	42	120	691	120	535	600		60	30	385		190	230	140	551	565			207
100A-400				280	110	12	45	42	120	691	120	635	700		60	30	385		190	230	140	551	635			265
100BC-200				200	80	10	35	32	120	649,5	120	515	580		60	25	378		190	230	140	509,5	480			135
100B-250	150	100	20.9	225	110	12	45	42	120	651	120	535	600	22	60	25	385	65	190	230	140	551	505			178
100B-315			,5	250	110	12	45	42	120	691	120	535	620		60	30	385		190	230	140	551	565			204
100B-400				280	110	12	45	42	120	691	120	620			60	30	385		190	230	140	551	695			272
150A-250				250	110	12	45	42	140	691	140	600	680		70	25	385		190	230	140	551	605			221
150A-315	200	150	20,9	280	110	12	45	42	140	691	140	620	700	22	70	30	385	80	190	230	140	551	635			246
150A-400				315	110	12	45	42	140	691	140	670	750		70	30	385		190	230	140	551	715			308

8.3 Pump dimensions

8.4 Pump-motor unit

For dimension see GAD enclosed with the delivery.

<u>SPXFLOU</u>

9 Parts

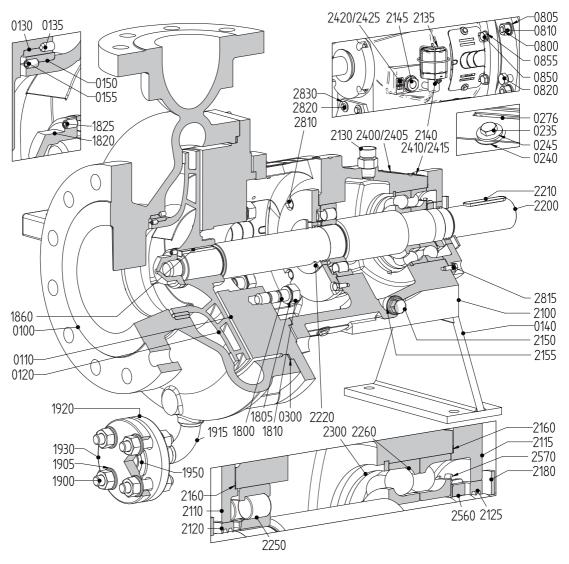
9.1 Ordering parts

9.1.1 Order form

You can use the order form included in this manual for ordering parts.

When ordering parts always quote the following data:

- 1 Your address.
- 2 The quantity, the item number and the description of the part.
- 3 The **pump number**. The pump number is stated on the label on the cover of this manual and on the type plate of the pump.
- 4 In the event of different electric motor voltage you should state the correct voltage.


9.1.2 Recommended spare parts

Parts marked with a ^{1), 2), 3)} are recommended spare parts.

- ¹⁾ Start-up spares
- ²⁾ Initial spare parts (one year operation)
- ³⁾ Normal spare parts (two years operation)

9.2 Pump

9.2.1 Sectional drawing pump

Figure 13: Sectional drawing pump.

				AP	-610 Material	Classes					
Item	Quantity	Description	S-1	S-6	S-8	C-6	A-8				
0100	1	pump casing		carbon ste	el	chrome steel	stainless steel				
0110	1	pump cover		carbon ste	el	chrome steel	stainless steel				
0120 ³⁾	1	impeller	cast iron	chrome steel	stainless steel	chrome steel	stainless steel				
0130 ¹⁾²⁾³⁾	1	casing wear ring	chro	ome steel	stainless steel	chrome steel	stainless steel				
0135	3	set screw			stainless ste	eel					
0140	1	bracket support			steel						
0150 ¹⁾²⁾³⁾	1	impeller wear ring	chro	ome steel	stainless steel	chrome steel	stainless steel				
0155	3	set screw			stainless ste	eel					
0235	8	bolt			stainless ste	eel					
0240	8	washer			spring stee	əl					
0245	8	washer			stainless ste	eel					
0276	8	seal guard			stainless ste	eel					
0300 ¹⁾²⁾³⁾	1	gasket		S	tainless steel/g	raphite					
0800	**	stud			carbon ste	el					
0805	**	washer			steel						
0810	**	nut			carbon ste	el					
0820	2	bolt			stainless ste	eel					
0850	***	bolt			stainless ste	eel					
0855	***	washer			stainless ste	eel					
1800	4	stud			stainless ste	eel					
1805	4	washer			stainless ste	eel					
1810	4	nut			stainless ste	eel					
1820 ³⁾	1	cap nut	41	40 steel	stainless steel	chrome steel	stainless steel				
1825 ³⁾	1	set screw			stainless ste	eel					
1860 ³⁾	1	impeller key			stainless ste	eel					
1900	4	stud bolt			carbon ste	el					
1905	8	washer			carbon ste	el					
1915	1	elbow		carbon ste	el	stainle	ss steel				
1920	1	welding neck flange		carbon ste	el	stainle	ss steel				
1930	1	blind flange		carbon ste	el	stainle	ss steel				
1950 ¹⁾²⁾³⁾	1	gasket		S	tainless steel/g	raphite					
2100	1	bearing bracket			carbon ste	el					
2110	1	bearing cover			stainless ste	eel					
2115	1	bearing cover			stainless ste	eel					
2120 ³⁾	1	oil catcher			bronze						
2125 ³⁾	1	oil catcher			bronze						
2130	1	oil filler cap			stainless ste	eel					
2135	1	wire cage			steel						
2140	1	constant level oiler									
2145	1	oil sight glass									
2150	1	magnetic drain plug			steel						
2155	1	gasket			gylon						
2160 ³⁾	2	gasket									
2180	1	deflector			rubber						

9.2.2	Parts list pump
-------	-----------------

ltom	Quantity	Description	API-610 Material Classes									
Item	Quantity	Description	S-1	S-6	S-8	C-6	A-8					
2200 ³⁾	1	pump shaft	414	0 steel ^{*)}	stainless steel	chrome steel	stainless steel					
2210 ³⁾	1	coupling key			steel							
2220	1	deflector			rubber							
2250 ²⁾³⁾	1	cylindrical roller bearing										
2260 ²⁾³⁾	2	angular contact ball bearing										
2300	1	inner circlip			spring stee	el						
2400	1	name plate			stainless ste	eel						
2405	2	rivet			stainless ste	eel						
2410	1	arrow plate			aluminium	l						
2415	2	rivet			stainless ste	eel						
2420	1	oil level plate			stainless ste	eel						
2425	2	rivet			stainless ste	eel						
2560 ³⁾	1	lock nut			steel							
2570 ³⁾	1	locking washer			steel							
2810	4	bolt	stainless steel									
2815	4	bolt			stainless ste	el						
2820	2	bolt			stainless ste	el						
2830	2	washer			stainless ste	el						

* For Class S-6, the standard shaft material for boiler feed service and for liquid temperatures above 175°C is chrome steel

** Quantity depends on pump type

*** Quantity depends on bearing group

**** For bearing group 3 quantity 1

9.3 Mechanical seal piping plan 11 - tubing

9.3.1 Drawing plan 11 - tubing

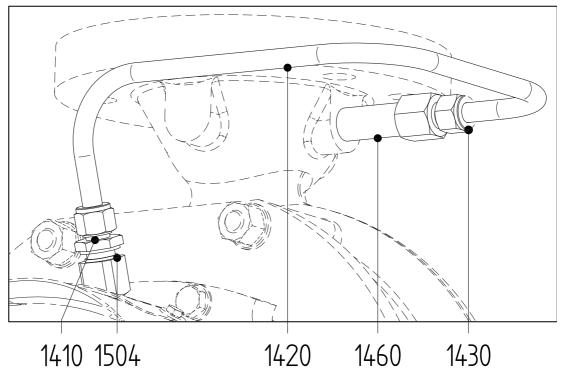
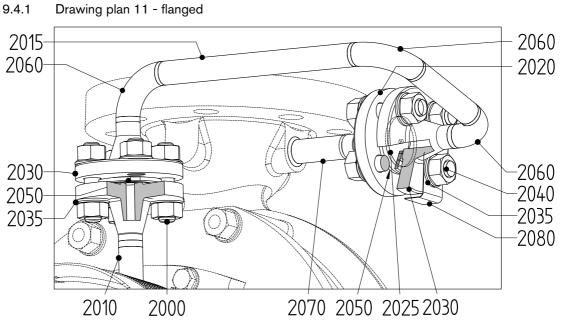


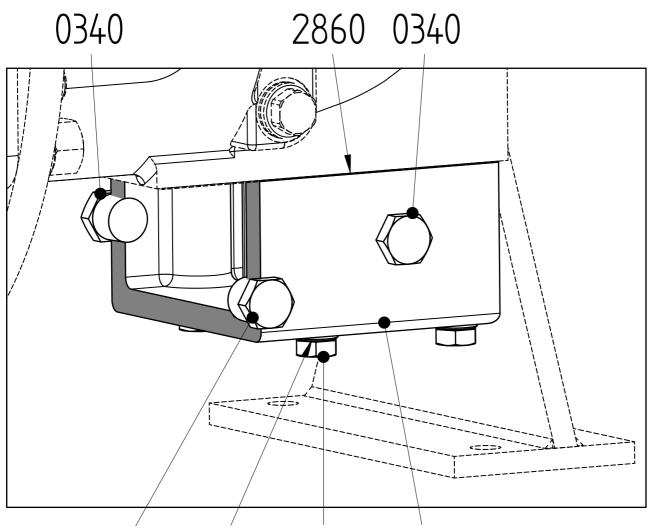
Figure 14: Drawing plan 11 - tubing.

Hom	Quantity	Description	API-610 Material Classes										
nem	Quantity	Description	S-1	S-6	S-8	C-6	A-8						
1410	1	pipe union		sta	inless st	eel							
1420	1	pipe		sta	ainless st	eel							
1430	1	pipe union		sta	inless st	eel							
1460	1	pipe nipple		sta	inless st	eel							
1504	1	orifice		sta	inless st	eel							

9.3.2 Parts list plan 11 - tubing

9.4 Mechanical seal piping plan 11 - flanged




Figure 15: Drawing plan 11 - flanged.

9.4.2 Parts list plan 11 - flanged

Item	Quantity	Description	Α	PI-610 I	Materia	I Class	es	
nem	Quantity	Description	S-1	S-6	S-8	C-6	A-8	
2000	4	stud bolt		са	rbon ste	eel		
2010	1	welding neck flange + pipe nipple		sta	inless s	teel		
2015	1	pipe		sta	inless s	teel		
2020	1	welding neck flange	Ca	arbon ste	el	stainles	ss steel	
2025	1	orifice		sta	stainless steel			
2030	2	welding neck flange		sta	inless s	teel		
2035	16	washer		са	rbon ste	eel		
2040	4	stud bolt		ca	rbon ste	eel		
2050 ¹⁾²⁾³⁾	3	gasket		sta	inless s	teel		
2060	3	elbow	stainless steel					
2070	1	pipe	Ca	carbon steel stainless st			ss steel	
2080	1	orifice plate		sta	inless s	teel		

9.5 Oil chamber jacket

9.5.1 Drawing oil chamber jacket

0330 2845 2840 2850

Figure 16: Drawing oil chamber jacket.

9.5.2 Parts list oil chamber jacket

Item	Quantity	Description		API-610	Material		
nem	Quantity	Description	S-1	S-6	S-8	C-6	A-8
0330	1	plug		st	ainless ste	el	
0340	2	plug		st	ainless ste	el	
2840	6	bolt	stainless steel				
2845	6	washer	stainless steel				
2850	1	oil chamber jacket		C	arbon stee	əl	
2860 ¹⁾²⁾³⁾	1	gasket					

9.6 Pump casing jacket

9.6.1 Drawing pump casing jacket

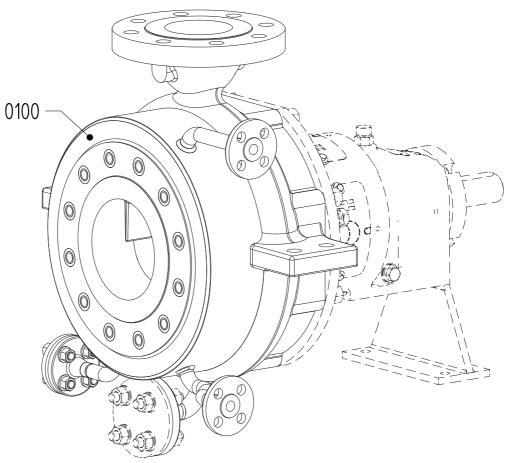


Figure 17: Drawing pump casing jacket.

9.6.2 Parts list pump casing jacket

Itom	Quantity	Description	Δ	PI-610	I Classe	Classes		
nem	Quantity	Description	S-1	S-6	S-8	C-6	A-8	
0100	1	pump casing jacket	carbon steel stai		stainles	ss steel		

10 Technical data

10.1 Tightening moments

10.1.1 Tightening moments for bolts and nuts

For nuts for pump casing (item 0810), see paragraph 10.1.3 "Torques settings for nuts for pump casing"!

Materials	8.8	A2, A4
Thread	Tightening n	noment [Nm]
M6	9	6
M8	20	14
M10	40	25
M12	69	43
M16	168	105

Table 5: Tightening moments for bolts and nuts.

10.1.2 Tightening moments for cap nut

Table 6: Tightening moments for cap nut (1820).

Size	Tightening moment [Nm]
M12	43
M16	105
M24	220

<u>SPXFLOW</u>

	Bearing group	Size	Lubricated	Not-lubricated
	Bearing group	5120	[Nm]	[Nm]
40A-125	1	M10 (8x)	40	47
40A-160	1	M12 (8x)	69	80
40AA-160	1	M12 (8x)	69	80
40A-200	1	M12 (8x)	71	83
40AC-200	1	M12 (12x)	73	84
40A-250	2	M12 (12x)	71	82
50A-125	1	M10 (8x)	40	47
50A-160	1	M12 (8x)	69	80
50A-200	1	M12 (8x)	71	83
50A-250	2	M12 (12x)	71	82
50AA-315	2	M16 (8x)	167	194
50B-125	1	M10 (8x)	40	46
50B-160	1	M12 (8x)	67	77
50B-200	1	M12 (8x)	71	83
50BA-200	1	M12 (8x)	71	83
50B-250	2	M12 (12x)	71	82
50B-315	2	M16 (8x)	168	196
80A-125	1	M10 (8x)	40	46
80A-160	2	M12 (8x)	67	77
80AC-160	2	M12 (12x)	69	80
80A-200	2	M12 (8x)	70	82
80AC-200	2	M12 (12x)	73	84
80AA-250	2	M12 (12x)	69	80
80A-315	3	M16 (8x)	171	199
100A-160	2	M12 (8x)	67	77
100A-200	2	M12 (8x)	70	81
100A-250	2	M12 (12x)	70	81
100AA-250	2	M12 (12x)	70	81
100A-315	3	M16 (8x)	168	196
100A-400	3	M16 (12x)	165	192
100BC-200	2	M12 (8x)	70	81
100B-250	3	M12 (12x)	69	79
100B-315	3	M16 (8x)	168	195
100B-400	3	M16 (12x)	172	200
150A-250	3	M12 (12x)	69	79
150A-315	3	M16 (8x)	169	197
150A-400	3	M16 (12x)	172	200

10.1.3 Torques settings for nuts for pump casing Table 7: Torques settings for nuts (0810) for pump casing

10.2 Permissible forces and moments on the flanges

Forces and moments acting on the pump flanges due to pipe loads can cause misalignment of the pump and driver shafts, deformation and overstressing of the pump casing, or overstressing of the fixing bolts between the pump and the base plate.

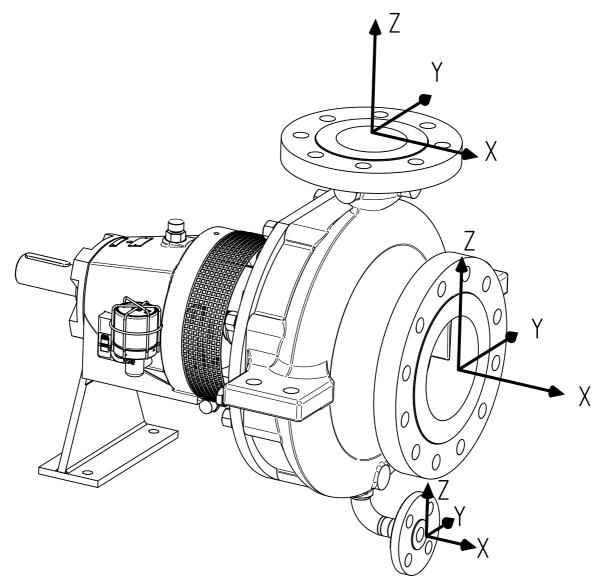


Figure 18: Coordinate system.

<u>SPXFLOU</u>

40A-125 40A-160	x	Fy	Fz	Suc			m]			[]					m]	
40A-125 40A-160	x	Fy	F		tion				Discharge							
40A-160			'z	Fr	M _x	My	Mz	Mr	Fx	Fy	Fz	Fr	M _x	My	Mz	Mr
4044 100 00																
40AA-160 85	90	710	580	1280	460	230	350	620	710	580	890	1280	460	230	350	620
40A-200																
40AC-200																
40A-250																
50A-125																
50A-160																
50A-200 13	330	1070	890	1930	950	470	720	1280	710	580	890	1280	460	230	350	620
50A-250																
50AA-315																
50B-125																
50B-160																
50B-200																
50BA-200 13	330	1070	890	1930	950	470	720	1280	710	580	890	1280	460	230	350	620
50B-250																
50B-315																
80A-125																
80A-160																
80AC-160																
80A-200 17	'80	1420	1160	2560	1330	680	1000	1800	1070	890	1330	1930	950	470	720	1280
80AC-200																
80AA-250																
80A-315																
100A-160																
100A-200																
100A-250																
100AA-250 31	10	2490	2050	4480	2300	1180	1760	3130	1420	1160	1780	2560	1330	680	1000	1800
100A-315																
100A-400																
100BC-200																
	10	2490	2050	4480	2300	1180	1760	3130	1420	1160	1780	2560	1330	680	1000	1800
100B-315																
100B-400																
150A-250																
	390	3780	3110	6920	3530	1760	2580	4710	2490	2050	3110	4480	2300	1180	1760	3130
150A-400																

10.2.1 Allowable forces and moments on suction and discharge flanges Table 8: According API 610 - table 4 "Nozzle loadings"

Pump mounted on a grouted base plate of carbon steel

Fr, Mr = resultant

10.2.2 Allowable forces and moments on the drain flange

Table 9: According API 610 - table 4 "Nozzle loadings"

Allo	wable	forces	5 [N]	Allowa	able m	oment	s [Nm]
F _x	Fy	Fz	Fr	M _x	My	Mz	Mr
890	710	580	1280	460	230	350	620

Pump mounted on a grouted base plate of carbon steel

Fr, Mr = resultant

10.3 Lubricants

10.3.1 Oil

Table 10: Recommended oils according to ISO VG 68 classification for ambient temperatures above 15 °C.

BP	Energol HLP-HM 68
CHEVRON	Rando HDZ 68
CHEVRON	Regal Premium EP 68
EXXONMOBIL	Mobil D.T.E. Oil Heavy Medium
EXXONMOBIL	Teresstic T 68
SHELL	Tellus 68
TOTAL	Azolla ZS 68

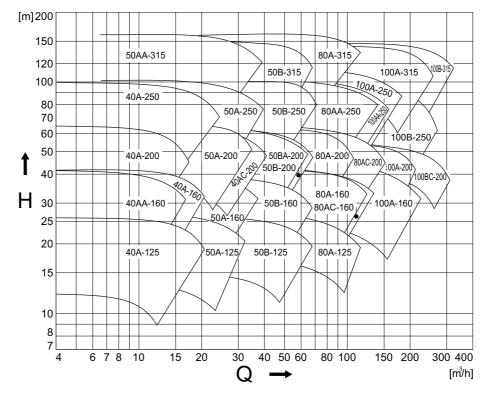
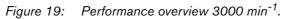
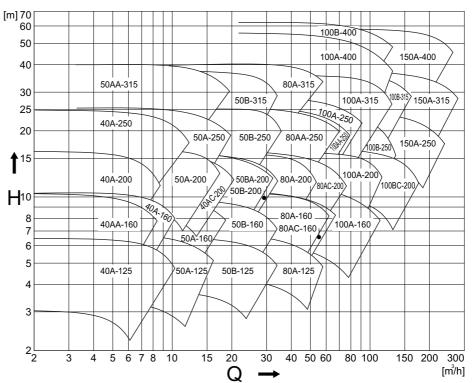
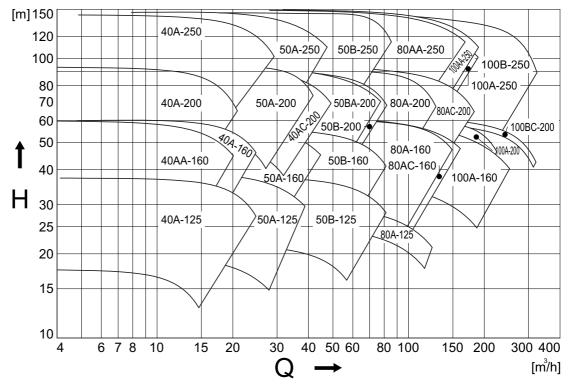

10.3.2 Oil contents

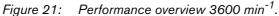
Table 11: Oil contents.


Bearing group	Oil contents [litres]
1	0,40
2	0,50
3	0,60


<u>SPXFLOU</u>

10.4 Hydraulic performance


10.4.1 Performance overview cast steel material class S-1



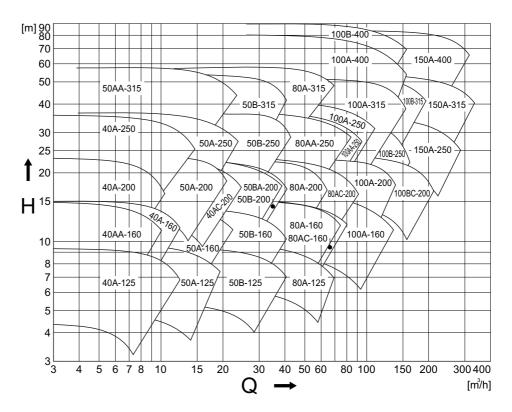
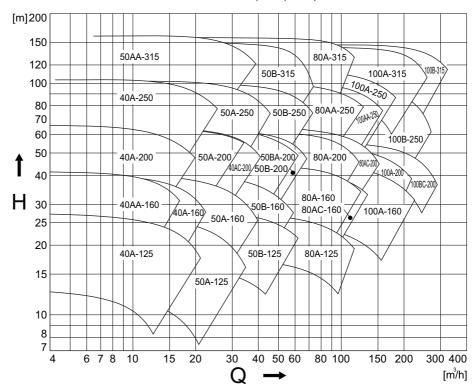
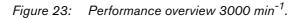
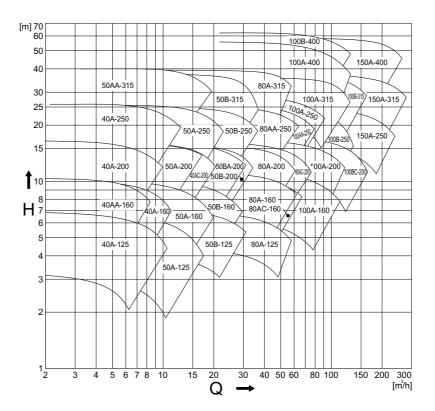


Figure 20: Performance overview 1500 min⁻¹.

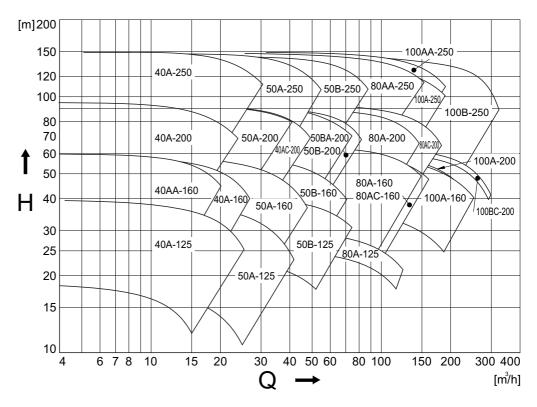
<u>SPXFLOW</u>






Figure 22: Performance overview 1800 min⁻¹.

<u>SPXFLOW</u>


10.4.2 Performance overview material classes S-6, S-8, C-6, A-8

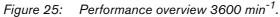


Figure 24: Performance overview 1500 min⁻¹.

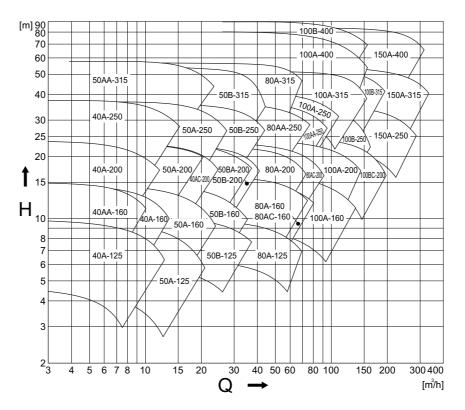
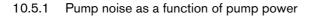



Figure 26: Performance overview 1800 min⁻¹.

<u>SPXFLOU</u>

10.5 Noise data

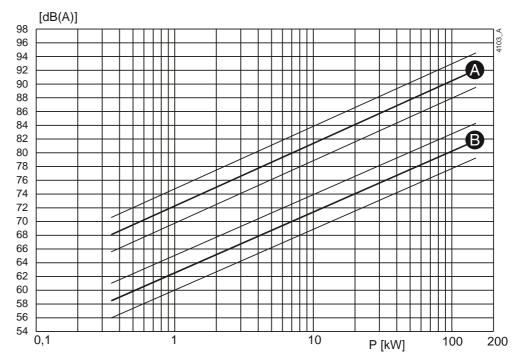


Figure 27: Noise level as function of pump power [kW] at 1450 min⁻¹ A = sound power level, B = sound pressure level.

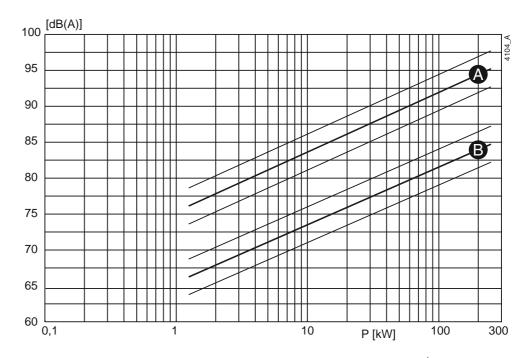
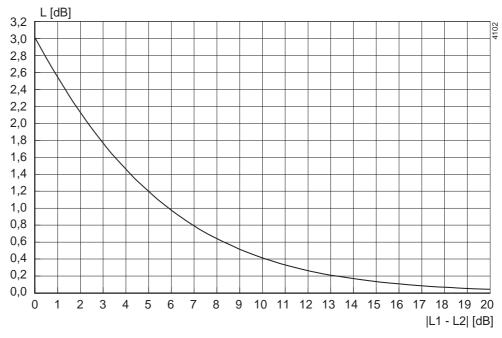



Figure 28: Noise level as function of pump power [kW] at 2900 min⁻¹ A = sound power level, B = sound pressure level.

Figure 29: Noise level of entire pump unit.

In order to determine the total noise level of the entire pump unit, the noise level of the motor must be added to that of the pump. This can be easily done by using the graph above.

- 1 Determine the noise level (L1) of the pump, see figure 27 or figure 28.
- 2 Determine the noise level (L2) of the motor, see documentation of the motor.
- 3 Determine the difference between both levels |L1 L2|.
- 4 Find the differential value on the |L1 L2|-axis and go up to the curve.
- 5 From the curve go left to the L[dB] -axis and read out the value.
- 6 Add this value to the highest value of both noise levels (L1 or L2).

Example:

- 1 Pump 75 dB; motor 78 dB.
- 2 |75-78| = 3 dB.
- 3 dB on the X-axis = 1,75 dB on the Y-axis.
- 4 Highest noise level + 1,75 dB = 78 + 1,75 = 79,75 dB.

Index

A

Accessories	23
Application area	17
Applications	13

В

C

Cartridge seal
assembly
disassembly
instructions for mounting
Cavitation 26, 28
Check
fuses25
sense of rotation26
Construction
bearing16
impeller15
pump casing15
shaft seal16
Coupling
alignment20
alignment tolerances21

D Drainir

raining																
liquid													 	3	1	
oil			•	 •	•	•	•	•	•			•	 	3	1	

F

Faults												 2	28
Foundation												 . 1	9

G

Guarantee	10
Guard	
assembly	33
disassembly	32

H Ho

Hoisting														1	1

ļ

Impeller	
disassembly	ł
mounting	3
Inspection	
motor25	5
pump25	5
pump	,

L

Lifting eye		11
Lubrication bearin	igs	
filling with oil		25
maintenance		27

Μ

Maintenance
mechanical seal
Maintenance staff9
Mechanical seal
mounting instructions

Ν

O Oi

Oil contents	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. (55	5

Ρ

Pallets10
Performance overview56
Permissible forces53
Piping
Precautionary measures
Pump
filling with liquid26
Pump description13
Pump unit
assembly20
commissioning26
installation20

R

Recommended oils	5
Re-use1	7

S

Safety	.9, 19
symbols	9
Scrapping	17
Serial number	15
Special tools	31
Start-up	26
Static electricity	19
Storage	11

Ţ

Technicians9
Tightening moments
for bolts and nuts
for cap nut51
for nut pump casing52
Transport10
Type code14

V

Ventilation			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		19	9	
-------------	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	----	---	--

W

35
34
33
23

Order form for spare parts

FAX Nr.	
ADDRESS	

Your order will only be dealt with if this order form has been correctly completed and signed.

Order date:	
Your order number:	
Pump type:	
Execution:	

Quantity	Item. No.	Part	Article number pump

Delivery address:	Invoicing address:

Ordered by:	Signature:	Telephone:

SPXFLOU

CombiPro

Heavy duty process pump according to API 610

SPX Flow Technology Assen B.V. Dr. A. F. Philipsweg 51, 9403 AD Assen, THE NETHERLANDS Phone: + 31 (0) 592 37 67 67 Fax: + 31 (0) 592 37 67 60 E-Mail: johnson-pump.nl@spxflow.com www.johnson-pump.com www.spxflow.com

For more information about our worldwide locations, approvals, certifications, and local representatives, please visit www.johnson-pump.com.

SPXFLOW Corporation reserves the right to incorporate our latest design and material changes without notice or obligation. Design features, materials of construction and dimensional data, as described in this bulletin, are provided for your information only and should not be relied upon unless confirmed in writing.

ISSUED 12/2015 Copyright © 2015 SPXFLOW Corporation